skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopkins, Loren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 31, 2026
  2. Abstract As clinical testing declines, wastewater monitoring can provide crucial surveillance on the emergence of SARS-CoV-2 variant of concerns (VoCs) in communities. In this paper we present QuaID, a novel bioinformatics tool for VoC detection based on quasi-unique mutations. The benefits of QuaID are three-fold: (i) provides up to 3-week earlier VoC detection, (ii) accurate VoC detection (>95% precision on simulated benchmarks), and (iii) leverages all mutational signatures (including insertions & deletions). 
    more » « less
  3. Wastewater-based epidemiology has played a significant role in monitoring the COVID-19 pandemic, yet little is known about degradation of SARS-CoV-2 in sewer networks. Here, we used advanced sewershed modeling software to simulate SARS-CoV-2 RNA degradation in sewersheds across Houston, TX under various temperatures and decay rates. Moreover, a novel metric, population times travel time ( PT ), was proposed to identify localities with a greater likelihood of undetected COVID-19 outbreaks and to aid in the placement of upstream samplers. Findings suggest that travel time has a greater influence on RNA degradation across the sewershed as compared to temperature. SARS-CoV-2 RNA degradation at median travel times was approximately two times greater in 20 °C wastewater between the small sewershed, Chocolate Bayou, and the larger sewershed, 69th Street. Lastly, placement of upstream samplers according to the PT metric can provide a more representative snapshot of disease incidence in large sewersheds. This study helps to elucidate discrepancies between SARS-CoV-2 viral load in wastewater and clinical incidence of COVID-19. Incorporating travel time and SARS-CoV-2 RNA decay can improve wastewater surveillance efforts. 
    more » « less
  4. null (Ed.)